AD=A080 838

UNCLASSIFIED

STANFORD UNIV CALIF SYSTEMS OPTIMIZATION LAB F/6 12/2
SOLVING STAIRCASE LINEAR PROGRAMS BY THE SIMPLEX METHOD. 2, PRI==ETC(U)
:gx ;; 1: FOURER NOOO18=T5=Ca0267

Systems / 5/

Optimization
Laboratory

T

| g
: ent

; for public z.rmh‘ bm{ Spproved
F distrih and sqle; §

Department of Operations Research
Stanford University
Stanford, CA 94305

| 80 2 14 022

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

94305
SOLVING STAIRCASE LINEAR PROGRAMS E
BY THE SIMPLEX METHOD, 2: PRICING

by
Robert Fourer

TECHNICAL REPORT SOL 79-19
November 1979

. \n-nn--v‘b«‘o~.v**'m~'ﬂ ——

{ Thas Jrxwwmt hs been aooreved

3 for puade ol e vl mtler @
Fociattuoton e pndingited, 4

P e B e e e e -t - A e s ——

Research and reproduction of this report were partially supported
by the Department of Energy Contract DE-AS03-76-SF00326 PA¥
DE-AT-03-76ER72018; the Office of Naval Research Contract
N00014-75-C-0267; the National Science Foundation Grants
MCS76-20019 AO1 and ENG77-06761.

Reproduction in whole or in part is permitted for any purposes of
the United States Government. This document has been approved
for public release and sale; its distribution is unlimited.

INTRODUCTION)

The goals of this paper are those of its predecessor [2]: to
solve staircase-structured linear programs faster through adaptation of
the algorithms of the modern simplex method. The means are quite different,
however. Whereas [2] concentrated on "inversion" algorithms that factorize
the basis and solve linear systems, the present papcr looks at "pricing"
algorithms that find a variable to enter the basis at each iteration.

Pricing involves two sorts of activities: computation of reduced
costs that determine which wariables are eligible to enter the basis, and
selection of an entering variable from among those eligible. Thus an
implementation of pricing in the simplex method requires both computation
and selection algorithms. Either sort of algorithm may be adapted to
staircase structure.

This paper begins with a short general review of staircase linear
programs. Sections 2 and 3 then look at the computation algorithms, after
which Sections 4 and 5 deal with selection algorithms. Staircase adapta-
tions of both kinds of algorithms are proposed and evaluated.

Section 6 reports extersive computational experience with the pre-
ceding proposals. The staircase computation algorithms for pricing are

found to offer modest but consistent savings. Staircase selection

algorithms, properly chosen, produce more spectacular results: the number
of iterations, time per iteration, or both may be reduced substantially
by comparison with standard methods.

Overall the prospects for staircase adaptation of the simplex
method appear highly promising. When the methods of this paper are com—
bined with those of [2] in the most efficient way, one may expect savings

of 50% or more for many different kinds of staircase linear programs.

1

1. STAIRCASE LINEAR PROGRAMS
This section summarizes the treatment of staircase structures
developed in {1,2], with special attention to properties important in

pricing.

é Formulation

Staircase linear programs (LPs), as defined in [2], share two
simple characteristics: their variables fall into some sequence of dis-
joint groups; and their constraints relate only variables within adjacent

groups. Usually the sequence of groups corresponds to a sequence of

times, so that variables in a group are said to represent activities of
one period. Constraints thus indicate how activities in one period are
related to activities in the next.

A constraint 1s said to be in period 2 if it contains variables of
period £ but not of later periods. Typically some constraints involve
only variables of period £, while others relate variables of periods %
and 2-1; the latter are linking comstraints, whereas the former are non-

linking. Analogously, linking variables appear in comstraints of periods %

and 2+l1, while non-linking variables appear only in constraints of
period ¢.

A more general approach defines a staircase LP to be of order r
if its constraints relate variables that are at most r periods apart.

Many of the ideas of this paper are applicable to staircase LPs of any

order. However, the emphasis is on first-order staircases as defined above:
these have the simplest and strongest structure, and so are best suited

to special techniques.

Staircase matrices

Following [2], the matrix of constraint coefficients of a staircase

linear program is a staircase matrix. Its nonzero elements are confined

to certain submatrices centered roughly on and just off the diagonal--as,

for example,

<.

S
Formally, one partitions the rows of an m X n matrix A into t disjoint
subsets, and the columns into t disjoint subsets, so that A is

partitioned into t2 submatrices, or "blocks":

AiJ 1=1,...,t5 J=1,...,t

A 1is lower staircase (as above) if A = 0 except for { = j and

1}

i=3+l. A 1is upper staircase if Aij = 0 except for i =3 and

i = 3-1.

By analogy with staircase LPs, rows in the ith partition of a
staircase matrix A are called period-i rows, and columns in the jth
partition are called period-j columns. 1f a period-i row has nonzero
elements in blocks Ai‘i-l and Aii’ it 18 a linking row; if it has

nonzeroes only in Aii it is a non-linking row. Similarly, a period-j

3

colum that has nonzeroes in A and A is a linking columm,

33 It}

14 only is a non-linking column,

It may be assumed, without loss of generallity, that all stair-

whereas one that has nonzeroes in A

case LPs have a constraint matrix A in standard form: A s lower stair-
case, and the diagonal blocks 4A;, have no all-zero rows or columns,

\
If A 1is permuted to put the linking rows of each period first, and

the linking columns of each period last, then it also has the follow-

ing reduced form:

-TssTETTETTTA

Ay

“32 A

33

The intersection of period-k linking rows and period-(k-1) linking columns
is the reduced block Ak,k-l'
If the linking rows of every period 1 are switched to period i-1

then A gains an alternative row-upper-staircase torm:

=y T T ORI SRR 29T S 5T

3
*
\

TN T TSI AT L e T =

Switching the linking columiz of peviod § to period {41 gives a diftevent,
columi-upper-stafvcase form. Thur a stafrcase A {n reduced standard
form embodiea three ztafrcases--lower, row-upper, and colum-upper--

cortesponding to three diffevent chofeer of where the perionds degin and

ewd.

Statvcase bhasex

Any baxig B of a statvcase livear program necessavily {nhevits

A jtafrease
N(“_l and
that lie (0

likewine be

E{thev R‘(or R mav be zero along some 1{nking row { (¢
tt happens that, in N‘ oy \'pd.an the nongerces along row { arve
ot ton=bhastc columiz, Thuas the tnhevited statvcase of R need not he
tn standard o reduced form, even ft A s,

Henceforth anv m Y m basis B will he azzumed to have the staiv-

vaze form {fnherited from A, The number of rows of R {n pertod § will

de denvted

atructure from the constraint matvrix A: BR's statrvcase blocks,

R((. wmay he taken as the sub-blocks of A(‘(“ and A((
the bagic vlumns. 10 A hag a voduced form, R((-1 mav
.

taken ax the basic pavt of A Co1”
.

TETTTTTETT A

N

¢ -1

g and the number of columax of R {n periad § will bde ‘

it b i ‘

denoted n,; the respective numbers of linking rows and columns will be

3

m, and n,. For the row-upper~-staircase form, the number of rows in

1 3

period 1 will be mi, and for the column-upper-staircase form the number

3

4
of columns in period j will be n’. Necessarily zmi = im = Enj - an- m,

-

and m, {m, n

1 T j,g nj.

Balance constraints and square sub-staircases

Since the basis B 1is nonsingular, it must obey the "balance

constraints" developed in [l]. In summary, these restrict the excess of

rows over columns in each period, individually and cumulatively, as follows:

0 5_2i (ny-m,) S_min(ﬁg+l,ﬁﬁ) ,

~oin(@,, 8,) < I (@-m) < mina), kg =1,..., t-l

2+1 ’ﬁz

~ ~ t
-min(mk,nk_l).i Ek (“i_mi)-i 0, k=2,..., t

In words, the cumulative imbalance between rows and columns in periods k

through ¢ is bounded by the smaller dimension of 8 and the smaller

k,k-1
dimension of Bz+1 % Hence these constraints are quite strict when
9
there are relatively few linking rows or columns.
The first constraint above may also be written as the following

three inequalities:

L L
1“1—’-21‘“1

. L1
i Sl m
g 1, oL

Lo Sl

6

s - N S

These say that the first £ periods of the lower staircase cannot hawve
more rows than columns, while the first 2 periods of the associated row-
upper or column-upper staircase cannot have more columns than rows.

All three of these relations are equalities when £ = t, since
B 18 square. It can also happen that equality is achieved for some

2 L
2 < t. For example, if 21 m =) 0, B must look something like this:

{
A
i
t
1
{
J

3 3
------------- 1 21“‘1'21“1

L=

The rows and columms of periods 1 through £ form a square sub-staircase,

as do the rows and columns of periods £+1 through t; they are linked

only by nonzero elements in the off-diagonal block B In a similar

L+1,0°
way an equality Xi ni = Ei mi implies a pair of square sub-staircases
within the row-upper staircase form, and Xi ni = Zi m, implies the

same for the column-upper form.

Generally B may exhibit any or all of these three kinds of
equalities, and each may hold for several values of £ < t. If p differ-
ent such equalities hold, then B breaks into p+l disjoint square
sub-staircases. Square sub-staircases can have a strong effect upon the

iteration path of the simplex method, as Section 4 will show.

7

o vt B

2. PRICING IN THE SIMPLEX METHOD

Each iteration of the simplex method begins with the choice of a

nonbasic variable to enter the basis. The operations involved in making
this choice are collectively referred to as pricing. Timings of staircase
LPs in [2] show that pricing is invariably an expensive part of the
simplex method, typically one-third to two-thirds of the total cost.

This section surveys current techniques of pricing, to set the
stage for discussion of staircase pricing in the sequel.

To keep things simple it will be assumed that the problem is to
maximize ch, that x 1s subject only to explicit constraints Ax = b
and implicit nonnegativity (x > 0), and that a feasible basis 1s at hand.
Straight forward extensions permit implementation of the composite simplex
method [16,20] for infeasible bases, and of implicit upper and lower bounds

! of all sorts.

The constraint matrix A will be taken to include the objective

as row 0; a, will be the jth column of A. B will represent a basis,

3
and ‘E the succeeding basis; a tilde will also indicate other quantities

that have changed with the basis. A unit column with a 1 in row j will 3

be written e,.

3

Choosing a variable to enter the basis

Central to all pricing techniques are the reduced costs, dj’

E J=1,...y n. If the jth variable is nondbasic, dj

objective will increase when J 1s brought into the basis (at a positive

> 0 implies that the

value), while d, < 0 implies that the objective will decrease when j

3

8

—;-.-,,._..,....

enters the basis. Thus the simplex method can be guaranteed to find a
maximum provided that, at each iteration, a variable j having dj >0
is chosen to enter the basis.

At most iterations there are many "eligible' nonbasic variables
whose reduced costs are positive. Any pricing technique, therefore, must
incorporate some criterion for choosing among the eligible nonbasics.

Early experiments [12,21]) showed that the number of iterations
in the simplex method 's highly sensitive to the pricing criterion,
Although it suffices to choose an eligible nonbasic at random, consider-
ably fewer iterations are required when the chosen variable q has a

maximum reduced cost:

This criterion produces the greatest ilmprovement in the objective per

unit change in the activity of the nonbasic variable. Not surprisingly,
the number of iterations is further reduced when q 1is chosen to maximize
total improvement in the objective at the current iteration.

Still better criteria have been developed by extending (1) in a
different sense. Criterion (1) can be looked at as follows [5]: {t
chooses to move along an edge of the feasible region whose gradient is
steepest in the subspace of the nonbasic variables. A superior criterion
chooses instead a steepest edge in the space of all variables. Writing
;ij (= [B-laJ]i) for the change in the ith basic variable per unit change

in nonbasicvariable j, suc. a "steepest-edge" criterion chooses q so

that

prpm—p—r

Wkl TP o s

Qo T2
d V1 +7a = max [d /\/l +'a] (2)
q - L

iq 13

In computational tests 15,6,12,21] this criterion and fts variants have

consistently yielded the fewest iterations.

Computational considerations

The efficacy of a pricing criterion must be balanced against the
computational effort required. Generally a "better” criterion cuts the
number of {terations but requires more computation per iteration, so that
it mayv or mav not be less expensive overall. For example, to implement
the greatest-total-improvement criterion one must first determine

Aj - mini[xi/sijl

for every nonbasic § such that d’ > 0; then the incoming variable g

must satisfy

A = max, A.,d

qa 94 3 43¢

These tests require a prohibitive amount of computation for all but the
smallest LPs.

Of all criteria that employ reduced costs, the gre test-reduced-
cost criterion (1) i{s certainly the simplest to implement: {t requires

only the d,6's. Moreover, d

J 3

can be computed efficiently in any of

three ways:

(a) Solve BTn = e0 for a vector of prices, . Then compute

d, = wTa .

b 3

(b) Update m from the previous iteration: 1f nonbasic variable

q replaced the pth basic variable, with pivot element q,

first solve BTv = ep for v, then compute T =7 - (dq/a)v.

Find dj = ?Taj as before.
(c) Update dj from the previous iteration: solve for v as in
~ T
b then compute d, =d, - (d /a)v a,.

On average (c) requires the least computational effort and (a) the most,

as explained in detail in [4,18]. However, (a) may afford considerahle

savings if not all d,'s are computed at each iteration (as in "partial

3
pricing" discussed below); in addition, with (a) not all of = need be
computed for staircase problems (as explained in Section 3). Method (b)
also allows partial pricing but must compute all of 1; partial pricing is
impractical with (c¢), which must find every dj at each iteration. For
staircase problems a hybrid of (a) and (b) may be desirable, as Section 3

shows.

Steepest-edge criteria (2) replace d, by a more complicated

3

function,

dj/\/l + Zéij '

Two practical implementations compute or approximate this function as

follows:

(d) Goldfarb [5]) stores an additional set of weights, Yj =1 +z Eij,

which are updated at each iteration. The incoming column may

then be chosen to maximize the square of the above function,

d;/yj, over all nonbasic j such that dj > 0.

11

— A oTIIII

core T R e

(e) Harris [6] takes a similar approach, but employs weights

Tj V1l + Z ;ij that are updated at most iterations and are

reset to 1 when they become too inaccurate. The incoming

variable is chosen to maximize d, /T,.

33

The advantage of (e) is that it requires only slightly more computation
than (a)-(c), whereas (d) must solve an extra linear system with BT and
must compute extra inner products. On the other hand, (d)'s more accurate
criterion tends to find an optimum in fewer iterations. Both (d) and (e)
must update all weights at each iteration by solving BTv = ep, computing
vTaj for nonbasic j, and additional steps; the dj's are thus cheaply j
updated at the same time by method (c). However, any efficiencies of ﬂ

method (a) or (b) through partial pricing are lost.

Partial pricing

All of the above methods involve an inner product to compute each
dj: either "Taj for (a)-(b), or vTaj for (c)-(e). Vector aj is
usually very sparse, so that only its nonzero elements and their row
indices need be stored. Hence any one of these inner products can be
computed cheaply. Nevertheless, the total cost of these products for all
d,'s may be substantial, especially if the LP has considerably more vari-

3

ables than constraints.

Partial pricing attempts to speed up method (a) or (b) by consider-
ing only some of the nonbasic variables as candidates to enter the basis
at each iteration. Only d,'s for these candidate nonbasics are needed,

3

12

and hence fewer fnnetr producta are computed. 11 the set of candidates

fa kept amall, the coat of an {teration can be markedly reduced. NHowever,

the number of {terationa tenda to bhe greater wnder pavtial pricing since
auparior potential candldates are ofton lett out of the candidate set.

Partial pricing is thus easentially a matter of trading more

{terations for less work per {teration. A good partial-priciag scheme

choosea candidate scta that make thisa tradeott a taverable one. The

o A - FENE S

sf{mpleat schemea partition the variables (nto a t{xed collection of
candidate neta that are priced {u votatton; move sophisticatod schomes

detormine the candidate seta Jdynamivally, stopping when a "good enough'

reduced cont has been tound. Dynamic partial priciug mavy be viewed
mathemat{cally aa a complicated optimal-stopping problem ta which the
dixtvibution of the reduced costa {x unkoown and gradually changing.
Some attompt has been made to anlve thia problem avstematically [7] tor

the most part, however, partial-pricing schemes have cmploved heuristics

]
b

vhonen becaune thev seomod reasonable and worked adequately.
The numbetr ot implamented stvategios tor parvtial pricing i«
{mmonxe -probably ue twe large scale avstems price (o exactiy the same

way. It theve ate anv commt principles, thevy are to avold stopping

prematurely with too small a reduced cost, and to stop promptly ouce a
big teduced vont 4 tound. Mrasures of what ix too small aud what ia
big may be etther absolute ot relative: abaolute toats compare reduced
contn with threshold values that are set fnf{tially trom exper{ence or by
A heurist e algortthm, and are uypdated as the mapgnttude of veduced costs
declitien; velative tenta make comparisona only among reduced costs tound
at the current {teration.

13

—_— R i AM“

Tartial priving i eapecially attractive when the colwms a

t

are not atored (n high-gpeed memotrvy, 2o that comput ing d fnvolves tead

{ing a' fute memory ar well ar an funer product. To gave reading costa,
aome {mplementat iona opevate az tollows: at "mator” {tevattons a 1egutan
pattlal price {r cavifed out, and a subget of attractive candtdate
columig (a8 saved (0 high-apeed memory: at sublimeguent "wminm” ttevattons
only this candidate subret fa prdved. iz sort of "maltiple” piteing
mav alze be viewed ar a partial-pricing schieme that gives preference to
vartables whore reduced cortar were hiigh v previcur {tevat tona,

Ntorage conatderattong have declived (0 tmpottance with the advent
o paged machines that can chieaply atmulate lavge newiy vegions oy 1Y
cades, Intevest v multiple pricing haa thos declined ag well, and the
experiments {n thie papetr use afmpler partial-pricing sehemes. Auv ot
theae achemes could be adapted, howevet, to admit wultiple pricing,

It fr poazible that rowe vetatons of pavtial or multiple pricing
are wmove econvmival for paged computeva bevauge they tend (o accean {ewer
different pager of memory per {tervatton, Feonemler of thie zott woanld
probably be amall, however, and mo tor pregent purtposes the eftects of

paging have been diavegarvded.

3. COMPUTING PRICES FOR STAIRCASE LPs

Consider now a linear program of staircase structure. Suppose

that the reduced cost of nonbasic column j} is to be computed by |

dj - nTaJ in method (a) or (b) of the previous section. If aJ is from

period ¢ then it has nonzero elements only on rows of perlods £ and £+1;

as a consequence, the inner product wTaJ requires only elements of =
that correspond to period-% and period-(2+1) rows.

More generally, if a is a column from period £ or later, then

]
its reduced cost can be calculated from only those elements of = that
correspond to rows of period & or later. This statement is true for
higher-order staircases as well as first-order ones.

These facts would be of no practical importance if all dj's were
calculated at every iteration. However, under partial pricing most
candidate sets will contain variables of only certain periods, and so at
most iterations only part of 7 will really be needed. The cost of

pricing might therefore be reduced if only the needed part of = were

computed.

Selective computation of the price vector

In practice there is no efficient way to compute arbitrary elements
of 7 independently of the other elements. Nevertheless, useful portions

of 7 can be computed more cheaply than all of =, provided that the

basis is arranged in an appropriate way.
Consider first method (a) of the preceding section, which finds =n

as the solution of BTn = ey Current LP codes solve this system by a

15

form of Gaussian elimination, as explained {n detail in [2]. After a

series of various computations (whose specitics are not {mportant heve)

the elements of n are tinally produced by a routine called BTRANL.

Essent fally BTRANL comprises a single main loop;ecach pass through this
loop computes a new clement of n from the previouslv-computed clements.
Thus a portf{on of 1 can be computed by simply stopping BTRANL prematurely,

1f later more of 1 {x needed, BTRANL can be rvestavted where {t lett off,

¢
Mfortunately RTRANL cannot produce the elements of 1 in any E
:
desired order; instead it must compute 1 {n a tixed ovder that §
corresponds to the ordering of B's rows tor Caussian elimination. é
. ¢
Standard methods of elimination choose a vrow ovderving tor cttf{ciency and :
numerical stabitity, without regard to the periods of the stafrcase,
As a result BTRANL tends to produce elewments of 1 tfrom various perfods
indiscriminately, and {t may be necessary to run most ot BTRANL to compute
all elements of 1t for even one period.

To compute portions of n usefully, therefore, B's ordering tor %
Gaussian elimination must preserve the stafrcase atructure. Two such 3
orderings are described in [1,2]: both leave the rows of the basis in %
or nearly {n period ovder. BTRANL then produces the elements ot » §

12
in nearly reverse perfod order: t, t-1, ... , 2, 1. ;

With these stafrcase orderings it 18 practical to selectively
compute n. If the partial-pricing scheme starts with colums frow
period ¢, then BTRANL {x called to compute n tov periods t, t-1,..., €41, ¢
only. This portion of n will suffice so long ax all candidates arve
in period t or later. 1f some candidate falls in an cavlier pertod,
say k, then RTRANL {3 resumed where it left oft to compute n for periods

16

t-1, ... , k+l, k. BTRANL may be restarted in this way several times
if the candidate set includes successively earlier periods.

The savings in computing only part of = caun be significant:
BTRANL is inherently a relatively expensive routine and accounts for
most of the cost of solving BTw = ey A set of six test problems in
[2] spent roughly 15-20% of their total time in BTRANL, or 20-25% of

their time if only fterating routines were considered.

Actual savings necessarily depend on the chosen pricing scheme.
If the candidate set usually contains variables from carly periods then
little will be gained; preferably the candidate set {s confined to later
perfods at a good proportion of iterations. For best results one may
ugse special staircase partial-pricing methods, which are the topic of

Section 5.

Selective updating of the price vector

It can be faster to update w--by method (b) of Section 2--than
to recompute n from BTn - eo. However, a full update requires a tull
solution to o system like BTv = e and it will usually be cheaper to
solve BTw =e, for part of = than to solve BTV = ey for all of v,
Thus full updating of = should be disadvantageous for staircase LP=s
under partial pricing.

Selective updating i1s a practical alternative. Suppose n (s
known for periods ¢,..., t, while at the next iteratfon n will be nceded
for periods k, ..., t. If k > ¢, n can simply be updated: first
BTv =e is solved by BTRANL for petiods t,..., k only;then perfods k
through t of ¥ are found by the updating formula

17

T 8 258

e gy W

e s o

LR Pl (dq/u)v‘

On the other hand, if k < t then n can be updated only as far back as

period t. The remainder of n must be found by solving BT; = ¢, In

the usual way--except that BTRANL may skip the computation of v for
periods t,..., ¢. (Alternatively, {f it is known that k <« { before

pricing begins then {t may be cheaper to drop the update step and just

~

solve BT; - for periods t,..., k of =.)

0
Selective updating Is essentially a hybrid of methods (a) and (b)

of Section 2. It might be possible to also include (v) in the hybrid,

so that some dj's are updated from v rather than being computed from

n. However, it is not clear that the additional savings would be worth

the extra complications.

In any event, the steepest-vdge methods--(d) and (e)~-must compute

3

Hence these methods require a full BTRANL at every {teration, and cannot

all of v to update their weights, regardless of which d,'s they cxamine,

benefit from selective computation or updating of .

18

L v AL Craig oAb Wi R Y i kA ol

4, ITERATION PATHS OF STAIRCASE LPs
The choice of a variable to enter the basis also largely determines
the variable that leaves. Thus different pricing techniques should be

expected to produce different sorts of iteration paths in the simplex

T R R T TR TR L T

method.

; For staircase LPs the connection between pricing and {teration
path can be especially strong and clear. This section shows that, when
the staircase basis has a certain sub-structure, an entering variable from
a given period must determine a leaving variable from a certain range of
periods. Moreover, the basic solution is unchanged cutside of this range.
These observations contribute to the design of staircase partial-pricing

schemes in Section 5.

Restrictions on the outgoing column

Suppose first that the basis has a square lower-block-triangular

form:

I |
Ban

(R

Baay| B22)

19 :

L—-——-_m v e Y L S

Assume further that the incoming column q is zero on all of the rows of

8(11). Then it is easy to see that the outgoing column must be from
8(22): otherwise 8(22) would gain a column and the new basis would be
gsingular. In short, if the incoming column belongs to the second block
then so does the outgoing column.

Consider now the values of the basic variables. They satisfy

Bx = b, where b is the LP's right-hand side; partitioning x and b

in conformance with the blocks of B,

1) (1)
B(ll)x = b

(1)

(2) (2)
3(21)x + B(22)x = b

When column q above is brought into the basis, only B(22) 1s altered;

consequently, basic variables x(l) are unchanged. In sum, if the in-

coming column belongs to the second block then the basic solution changes

only in that block.

A parallel analysis applies to any square upper-block-triangular

form of B:

By | Baa)

(4)

B(22)

20

T 4

R g UM S

Rt

iy
H
i
!
|
¢
{
£
’
]
»
%ﬁ
E
s

e

If the incoming column belongs to the first block then so does the out-
going column, and the basic solution changes only in the first block.
Putting these observations together, B can be imagined to have

a form like this:

| ;
Bay ,]
{
Bany| B2y | B2 (5) i
i
| n
: B(33)
.

e

where B(QE) are all square. 8(22) is both part of a lower-triangular
block (with 8(33)) and part of an upper-triangular block (with B(ll))'
Thus if the incoming column belongs to the middle block (8(22)) then
so does the outgoing columm, and the basic solution changes only in the

middle block.

Restrictions on the outgoing column of a staircase basis

Typical bases have many block-triangular partitions, and this

fact is used to advantage in sparse Gaussian elimination [1]. However,

there is generally no clear relation between these blocks and the structure

of the linear program. As a result there is no easy way to keep track

21

t.‘-
t
%
|4
3
L
K
;
3
&
t
¢
i
%
g
é
z
%
¢
k
i
f

of the blocks from fteration to iteration, and theve s no reason to

expect that an {ncoming column will belong to one block or another,

The situation is quite different when B has a staircase torm.
Then any square sub-stafrcase--as defined (n Section l--comprises a square
} diagonal block. sSguare sub-statrcases are castly kept track of trom

fteration to {tervation since they are detined by siwple relations tike

T - Tt
g™t

n, - Moreover, there (s every reason to expect that an incoming
variable may lic cutively with a square sub-stairvcase,

As a4 conseguengce strongetr statements can be made about the {tera-
tion path of statrcase LPs, Recall from Section 1 that lower sguare sub-

.

0 =N . .
stalrcases arise when ll m, - il ng tor some Con ot I dianram (D

above, let B(ll) represent the sub-stafrcase of the tivst ¢ periods,
3 while B(»\) is the sub=statrcase of periods ¢ +1 through ¢ “\l’\ con-
tains the linking block B, . then any {ucomfng column from periods

C+l

t+1 through t wust lic {n R . The conclustons ot the preceding

20
subsection can now be applied to imply that

< U . .
e If El mi - Fl "i' and {f the {ncoming column {8 from periods

t+l,..., t, then the ocutgoing column is alse from periods

’ t+l, ..., t and the activities of vaiiables {n periods

1,..., ¢ Jdo not ch.»mgv .

llpper square sub-staircases arise similarlv in commection with the row-

———
Py

upper and column-upper torms of B detined in Section 1. By analogous

reasoning in conjunction with diagram (), {t can alse be concluded that

‘e,
[2]

S | o

® If z: m1 = z: s and 1f the incoming column is from periods
1,..., L, then the outgoing column is also from periods

l,..., 2 and the activities of variables in periods ¢+1,..., t

do not change.

If Xi m, = Xi ni, and if the incoming column is from upper-

staircase periods 1,..., £, then the outgoing column is also

from upper periods 1,..., & and the activities of variables

in upper periods ¢+1,..., t do not change.
(As defined in Section 1, the upper-staircase periods 1,..., ¥ comprise
the corresponding lower-staircase periods less the period-2 1linking

columns.)

In the general case B may contain both upper and lower sub-

staircases, producing a situation as in diagram (5). Roughly speaking,

if periods 1,..., k form a lower square sub-staircase and periods

2+1, ..., t form an upper one, then an incoming column from periods

k+l,..., £ yields an outgoing column from the same periods and leaves

activities outside these periods unchanged.

Since staircase bases must be well-balanced (Section 1) the

presence of square sub-staircases should not be unusual. Indeed, results

of test runs suggest that bases exhibit several square sub-staircases

more often than not. Furthermore, it must be kept in mind that the above

statements apply to any staircase partitioning of the LP, not just to

the staircase identified by the modeler. Hence a number of other square

sub-staircases may go unidentified.

23

e e o Arp——

T e -

. o

Prevalence of square sub-staircases 1s also suggested by the
iteration paths of test runs: only infrequently is the outgoing column
more than a few periods from the incoming one. For example, the six test
problems of Section 6 (under full pricing) show the incoming and outgoing
variables two or fewer periods apart 1in 59%, 74%, 85%, 94%, 97%, and 98%

of a'l iterations.

Implications for pricing

Square sub-staircases may be viewed generally as creating barriers
to pricing at certain periods. A lower sub-staircase in periods 1 through
£, for example, places a lower barrier at i{: 1if the incoming column is
below the barrier then the outgoing column is also below the barrier, only
basic activities below the barrier are changed, and the barrier remains
at the next iteration. The basis and basic activities above the barrier
can change only if the incoming column is above the barrier, and the
barrier is removed only if additionally the outgoing column is below it.

These facts have important implications for partial pricing. So
long as the candidate set lies in periods below a lower barrier, activities
in periods above the barrier are unchanged. In effect, pricing below the
barrier suboptimizes the LP in the below-barrier periods, while fixing
the above-barrier periods. By contrast, pricing above the barrier
optimizes all the periods and tends to break the barrier down.

Upper sub-staircases naturally have an analogous but oppuesite
effect: they create upper barriers at certain perlods. Pricing above
an upper barrier suboptimizes the LP in above-barrier periods, while fixing
the below-barrier periods.

24

;
!
|
i

In general a basis can have several upper and lower barrinors.
Thus pricing in any one period suboptimizes the periods between the nearest
preceding lower barrier and the nearest succeeding upper barrier, fixing

the others.

As long as the basis tends to have square sub-staircases, thercefore,
partial pricing will tend to promote suboptimization. This may be a good
thing if the suboptima are near the true optimum, or a bad thing If the
suboptima are far from optimal. Both extremes were observed in the com-

putational experiments in Section 6.

Partial-pricing schemes can be devised either to encourage or
discourage suboptimization. Pricing the same periods repeatedly tends to
create barriers and suboptimize, while pricing throughout the matrix tends
to do the opposite. It is also possible to keep track of the number of
columns in cach perlod so as to price where barriers will most likely be
created or destroyed. Strategles along all of these lines are developed

in the following section.

5. PARTIAL PRICING FOR STAIRCASE LPs

It is now clear--given the results of the two preceding sections
~-that any partial-pricing scheme for staircase LPs should distinguish
among variables of different periods. Consequently all of the methods
proposed below price essentially one period at a time., These methods
differ considerably, however, in their choices of periods to price and
in their stopping criteria.

Four general procedures for stalrcase pricing are presented first

below. Subsequent subsections propose and evaluate specific variations

on these procedures.

Simple pricing by period

All methods of partial pricing by period involve some ordering of

k
(k) ng) pEk)

the periods-—pl s --at each iteration k., Assume for the

seves
moment that such an ordering has been chosen, according to one of the
principles suggested later in this section.

The most straightforward method first takes the nonbasics of

(k)
1

period p as the candidate set. If any of these variables has a

favorable reduced cost, one having a largest reduced cost is chosen to

(k)
2

enter the basis. Otherwise the nonbasics of period p are added to

the candidate set; if any of these has a favorable reduced cost, a best

(k) (k) (k)
3 L]

one is chosen. 1If necessary, the process repeats with p » Py arees P

stopping when a favorable d is found in some period. If no favorable

J

d, 1is found, the current basis is optimal.

3

Thiz procedure will be called afmple pricing by period. A

practical algortthm to carry {t out is as follows:

SIMPLE_ PRICING:

1: REPEAT FOR € FROM 1 TO t:

)
CHOOSE g, auch that d Md for all | {n pervind p:k

Y 3
1F d > 1(k), qelect q‘ to enter bas{s: RETURN

R

CHOWOSE ¢ such that dq Md tor ¢ = 1l,..., 1t
- L

Pe

IF d >, : Select q to enter basis; RETURN
q

11 Declave bhagis optimal; RETURN

Two tolerances ave employed., A fixed tolerance, o, defi{nes the smal test

reduced cost that {s considered diffevent from zevo, A dvnamic tolevance,

1(k) Moy defines an Macceptable” reduced cost: step 1 ot the alporvithm

N \(k).

will not let vaviable 4, enter the bax{s unlexx 1R}

q
) ¢
1

dl \ for all §, then step 2 mav select an entering colum g
having « < dq \1(k)
(k)
A substdiavy algorithm {8 reguired to update at ecach {teva-
. k)
tion. The geneval {dea {8 to pick targe enough that the chosen

d4 g not too far from max, 4, but small enough that only one or two

(k)

AN

periods are priced at most {terattons. For all tests {n Sectfon 6,

fs updated fn the tollowing way:

RUARN T
PR TINF JURS UL LS L B A Y)
< ¥ d 1(k): 1(k"\ -
q q

(k)

In effect 1 fs a fraction y of a rumning average of the choren

1 ' .
reduced costs d . To get a good starting value, 1() ia set to "fnfinfty,’
forcing 1(2) = \dq in step 24 subsequently atep 1 updates the moving

average, and step 2 {s i{nvoked only {f all reduced costs fall below

‘(k).

For a range of test problems (Section 6) a y of 0.2 or 0.5

usually gave best results,

Simple pricing with threshold
Stmple pricing by period might be {mproved by adding a move

sophisticated atopping rule, For example, a "deafvable" reduced cost

can be defined by a value T(k) D r(k) at each {terat{on: anv varfable

with 4 > T(k) is {mwediately brought into the basis without furthey

A
pricing. 1If all reduced costs {n a period are less than T(k). then a

vartable with d O

This strategy will be called stmple pricing with threshold 1

may bhe chosen as betorve,

LK)

Tt ia described algorithmically as follows:

SIMPLE PRICING WITH THRESHOLD:

1: REPEAT FOR ¢ FROM 1 TO t:

L.1: REPEAT FOR J nonbaric in period p§k):
N _ o
¥ d1 >T r Nelect | to enter bas{s; RETURN
1.2: CHOOSE g guch that dq h d' for all § in pertad p:k\
(N
1F dq > r(k): Select q, o entev bas{a: RETURN
¢
2: CHOOSE ¢ such that d > d for ¢ = 1,...,
Q- q

1F dq > et Select ¢ to enter basin; RETURN

3: Declare hanfa optimal; RETURN

(k)

must be determined along with « at cach {iteration. Experiments

20

of Section 6 use the formula

k k

(&) r(r()/Y)

where y 1is the parameter for the ((k) update algorithm above. Since
r(k) is basically y times a running average of previous reduced costs,
T(k) is a multiple T of the same running average. A I' of 1.1 was

used for most tests in Section 6.

Continuous pricing by period

It {s fastest and simplest to price the variables of each period
in some fixed order. As a result, however, simple pricing with theshold
tends to favor the earlier variables in each period: a later variable
is priced only {f dj < T(k) for all of the earlier ones.

To remedy this situation, the pricing algorithm may be moditicd
so that it always continues where it left off at the preceding iteration.

q(k-l) of period p(k-l) was

More precisely, suppose that variable
chosen to enter the basfs at period k-1. Then the revised algorithm,

called continuous pricing by period, proceeds as follows:

CONTINUOUS PRICING:
(k-1)
q

0: 1IF is not the last varfable {n period p(k_l):

0.1: REPEAT FOR J nonbasic in pertod p*™ 1) prom ¢ D1

IF dj 2 T(k): Select J to enter basis; RETURN

29

%t - A

0.2: CHOOSE 9 such that d > d, for all j priced

9, = 3
in step 0.1
IF dq042 r(k): Select q, to enter basis; RETURN
1: REPEAT FOR £ FROM 1 TO t:
1.1: REPEAT FOR j nonbasic in period pék) (TO q(k-l)
IF p:k) - p(k-l)):
IF d‘1 2 T(k): Select j to enter basis; RETURN
1.2: CHOOSE q, such that dqQ > dj for all 3j in period p:k)
IF dqg R r(k): Select q, to enter basis; RETURN
2: CHOOSE q such that dq Z_dqg for ¢ =0,..., t

1IF dq 2 €: Select q to enter basis; RETURN

3: Declare basis optimal; RETURN

Repeated pricingby period

A special case of continuous pricing always chooses the first-

priced period of the current iteration, p{k)

of the preceding {teration, p(k-l). It is easlly seen that the effect of

(k-1)

, to be the last-priced period

such a strategy is to price all of period p before any of the other

periods, in a cyclic fashion. As a consequence the incoming variable is

likely to again lie in p(k-l). Indeed, the incoming variable will be

(k-1) until d, < r(k)

3

chosen repeatedly from p for every j in that
period.
This idea of repeated pricing by period can be implemented as a

separate (though similar) algorithm, as follows:

. ‘hﬁ Ih-ﬂﬂm._.““ e om

REPEATED PRICING

0:

(k~1)

0.1: REPEAT FOR j nonbasic in period p

FRoM q* 141 TO end, and FROM start To q(¥"1).

IF d, 2 T(k): Select j to enter basis; RETURN

|
0.2: CHOOSE 4, such that dq 2 dJ for all j 1in period p(k-l)
0
IF d > T(k): Select qy to enter basis; RETURN
qO_
1: REPEAT FOR £ FROM 1 TO t (UNLESS pék) - p(k-l)):

[same step 1 as simple pricing with threshold]
2: CHOOSE q such that dq 2 dq for ¢ =0,..., t
L
IF dq 2 £: Select q to enter basis; RETURN

3: Declare basis optimal; RETURN

Pricing cyclically

It remains to specify how the periods will be ordered for any
of these four algorithms. Computational experience has shown that choice
of an ordering is often critical; sometimes rumning times vary much more
between different orderings than between different algorithms.

An obvious "neutral" ordering is a cyclic one that starts wherever
pricing left off at the previous iteration. Writing p(k‘l) for the

last-priced period at iteration k-1, a "forward" cyclic order at iteration

k prices

p Dy, p Vg L, 1, 2, L, p&, D

or, more formally,

31

Bt s

YTy

o e Sy A WA

g

p(k-l) + ¢ if p(k—l) + <t
(k)
P -
p(k-l) + 0 -t if p(k—l) + 0>t
Similarly a “backward" cyclic order is p(k—l)—l.‘.., I, ty «ouy p(k-l).

Cyclic orderings are suitable to any of the above algorithms.
Simple or continuous pricing with a ¢yclic order should discourage sub-
optimization, siuce the candidate set {s rotated amonyg all the periods.
Repeated pricing, on the other hand, tends to favor suboptimization since
{t prices the same period repeatedly. With a cyclic ordering, however,
repeated pricing always moves on to period ¢+1 when it has tfinished with
period ¢, so at least the suboptimization precceeds cyclically through all
the periods.

Many partfial-pricing methods for general LPs usce a kind of cvelic

ovdering: if j(k-l) was the last column priced at iteratfion k-1, then

pricing at fteration k begins with column j(k-1)+

j(k-l) is the last column of the LP), and continues cvcelivally through

1 (or with columm 1 if

all the nonbasic columns until some stopping rule is invoked. Cyelice
cont inuwous pricing dy period {s quite similar, although its stopping rule
does take the periods into account.

1f the price vector is only partially computed as suggested in
Section 3, then forward cyclic pricing is preferable. At the start of
p(k—l)+l

pricing, the vector n {s computed for pertods t,..., only;

{n most cases no more of 7 will be needed. The temainder of n (s
computed only at fterations {n which period 1 is priced.

Since extra computation {s required at period 1, it may pav to

apply a weaker tolerance 7 (k) N t(k) p(k—l)

after perfods +1l,..., ¢

K

T iy 1 ¥ S5

'llllllllIll!ll'lll!l!lll!!lFl!llll--Iul------u------u — S

have bheen priced: {¢ d, > :(k) for any variable in these periods, the

J
best candidate so far is selected and pricing of period 1 is put off to
the following fteration. The tests in Section & use the following heuristic

formula:

OB CPRRCSI VI

The size of the reduction from 1(k) to ;(k) is thus tied {nwersely to

p(k-l), the number of additional periods for which 5 must be computed to

prlcv pt‘l'l\\d 1.

Pricing carliest or latest

The simplest possible ordering starts with the first period and
runs forward:

P:k)‘ﬁ . ('1..--,(

A similar approach starts at the end and works backwards:

P:k) -t + 1 -¢ ,¢=1,..., 1t

With simple pricing, these ovderings produce an acceptable candidate
from the varliest or latest possible period. They scem leoss sulted to
the other algorithms, with which they have a more complicated behavior,
Farliest and latest pricing should both tend to suboptimize
heavily and conststently. They approximate a simple, intuitive strategy:
first optimtze the beginning (or end), then work forward (or backward),
Success of such a strategy requires that the suboptima not be too fav

from a true optimum,

13

Pricing tor a balanced bastis

1t was observed tn Section 1 that statvcase bases toud to be
"well=balanced,” {n the seuse that N, - omoo-the excess ot period-t
colums over periad=t rowss-cannot be very tar from sero. Pavtial pricing
can encourage 4 balanced basis by trving to bring columas {nto the basis

in columi=deticient periods: (¢ some of the outgoing columis happen to

be (n coltumn-exvessive periods, the overall balance of the hastis will

tmprove.

b Ty A R

Theze {deas sugpest ordering the peviods so that the mest colunn-

deticient come tivst, and the most column-excess{ve are last., More

tormally, such an ovdeving satist{es the tollowing relations (with ux:k‘.
u‘\ﬂ being the row and colum cownts at {teration kY.
o WY) (k) k) (k)
P “P mP NN m . { 1, o t
- k) L S RN 3 (k) (k)
I\ ‘\(L “l‘ mp N \\t - u\i . { - 1,.. « U3
KD (k)
¢
1 pl vers s P(-l
11 several perlods are tied with the same value ot “‘.\k\ - nx(\“. they can .

be ondered amonyg themselves {n any wav; it may be wise (o use a ovelic

ordering for this purpose, 2o that no period {8 unduly tavoved.

Thix ordering may be used with anv ot the pricing algorithms, In
all cases the ettect should be to keep '“(- n\l swall {n all perdods.

- K
As a consequence }‘ (ui - m‘\ should alse tend te be small and an

o {
tnerease {n square sub-statrcares {(wheve }l m‘ - m‘\ «) should be
expected. 11 pricing for balance does encourage squate sub-statircases,

1t will of course also tavor suboptimisation,

R)

Another possible advantage ot a balanced basis avises when the
statrcane bump-and-gpike technfques ot {1,2] are emploved tor Gaussian
elimination, A well-balanced basis has relatively tew "{ntevperiod
spikes”, and 80 fts 1 and U factors (espectally the latter) would be
sparser. Routines tor solving linear svstems should opevate taster as

a rvesult,

Pricing to avetd suboptimization

As explatued previously, squate sub-stafrcases qupper ot lower)
wive tixe to pricing bavviers: when anv column 1= brought fnto the bas(s
1t {s ettectively suboptimizing peviads between the nearest preceding
lowetr harvier and the nearvest succecding upper dbarvicr, 1t the locatione
ot barvicrs can be fdentiticd, partial pricing may scek to discoutage sub-
optimizat{ion by tavoring periads (o the ltavger suboptimtzat{on intevvals,
Detatls ave the same as tor balanced priciug above, except that the
mmbe v ne -om {s veplaced by the number ot pevicds between the pre-
cading Tower and succeeding gpper barviers nearest to peraed (.

I practice a basts mav have nuamerous statrease torms, and
aecms 4 hopeless taskh to Reep track of the bavvicrs v cevery onen 1t din
much more veasamable to tey to detertmine the ypper and lower bavviers
e stafrcase torm, as detined (o Section 4 this would veguire at west
Keeping track ot the numbers of Tinking and nen-tinking colums (v cach
period ot the basts, as the numbers ot vews ave tixed. Stoving this
tntormat ton and check fng tor barvicrs can be ovgantzed tatriv cttivient Iy,
ntovtunately, {1t pertains anly to the stafrease torm that the basis
tnherits tram the 1P barvievs (n the covvesponding reduced-statrease
torm (Section 1) mav g wndetected,

%

1€ the column-upper-stalrcase form of the basis is monitored,
upper barriers will occur between the linking and non-linking columns of
the same (lower~staircase) perfod. Thus it can be advantageous to con-
sider the basis as having 2t - 1 "half-periods": half-period 2¢ - 1
comprises the non-linking columns of period t, and half-period 2¢ the
linking columns. Half-pertiods are then ordered as above, and any of the
algorithms may be modified to price a half-period instead of a period at
a time, (The tests in Section 6--which monitored lower and column-upper
barriers only-~used a scheme of this sort.)

Barrier orderings are suitable to either simple or continuous
pricing by period. There is not much point fn using these orderinps with
repeated pricing, which tends to encourage rather than discourage sub-

optimization.

6. COMPUTATIONAL EXPERIENCE

This section reports on initial computational experiments with

some of the preceding suggestions for partial pricing by period. Results

show, not surprisingly, that partial pricing is considerably superior to
full pricing when reduced cost is the only pricing criterion. Tests also
confirm that partial computation of the price vector affords noticeable
savings.
i Most importantly, in several cases best results are achieved by
specialized staircase pricing methods that differ substantially f%o& the
common general methods. Partial pricing by period thus appears to offer
savings not otherwise available. Such a conclusion is further borne out

by comparisons with the performance of a standard commerical LP code.

Experimental setup

For the test runs an existing LP code, MINOS {15,17]},was modified
to recognize stalrcase structure and to apply staircase techniques. Since

MINOS employs a bump-and-spike approach for sparse Gaussian elimination,

the staircase bump-and-spike technique [2] was added as an option in the

=

test version. Various optional pricing algorithms were also added, but in 1
such a way that all use the same main loop for actually computing reduced

costs. Timings for test runs with different options can thus be meaning-

fully compared.

The test code is programmed in FORTRAN. Further details of the !
code and the experimental setup are in Appendix B.

Owing to a limited (though large) computing budget, testing was con-

e e 4 o e

fined to the following seven methods of partial pricing by period:

37

Ordering of periods Algorithm
cvelic simple
cyclic continuous
cyclic repeated
earliest simple
latest simple
balanced simple with threshold
barrier simple with threshold

Different values of tolevance parameter y were first tested with one
of the cyclic orderings: the y that gave best results was then used for
the other methods. The threshold parameter [was generally fixed at
1.1; a few tests. at lower values gave no better results.

Six medium-scale linear programs of dissimilar proportions were

employed in the experiments. Their overall dimensions are as follows:

PERIODS ROWS COLUMNS NONZEROES
SCARGR25 25 472 500 2208
SCRS8 16 491 1169 4106
GROW15 15 301 645 5666
SCFXM3 12 991 1371 8204
SCTAP2 10 1091 1880 8645
SCSD8 39 398 2750 11349

All experiments measured the total time and iterations to find an optimal
solution from a feasible starting basis; the test code could just as well
have started from an infeasible basis, but a feasible start was more

economical and made the results easier to interpret. The starting bases

were themselves produced from an all-slack start, using full pricing so

38

that no method of partial pricing would be favored. Additional (nformatfon
about the test LPs (s collected (n Appendix A,

In interpreting the results it should be kept in mind that total
{terattons are a somewhat stochastic quantity that may vary by as much
as 10X when even small changes are made. Proportionally small ditferences

{in iteration totals should thus not be taken too serfously. Many tables

pive hoth {terations and seconds per 100 {teratd{ons, so that {t can be
seen clearly how much of any improvement {8 due to fteration count and
how much to {teration speed.

Run times are also fmprecise, but much less so. Times presented

e ey T v i TR 05 SOOI

here have been rounded to avoild false precision, but all ratfos and per-

centages have been calceulated from the original readings,

Overall results

As a point of reference, the test problems were first ruan with
full greatest-reduced-cost pricing, All were tried both with and without
a sfmple geometric-mean scaling (described in Appendix B): SCRS8, CGROWES
and SCTAP2 showed notably fewer {terations scaled, while SCAGR2Y and
SCSDB required fewer fterations unscaled. SCFXM3 needed aboui the same
numbers of {teratfons scaled and wscaled, but the scaled verston was
preferred because 1t had a much smaller range of coefficient magnitudes.

Results of full pricing with the preferable scalings were as

§
tollows: {

=~

39

e FULL PRICING

TOTAL
SCALED? ITERATIONS CPU SEC/100 1TER CPU_SKC

SCAGR25 NO 296 4.8 14.13
SCRS8 YES 342 6.3 21.6 E
GROW1 5 YES 572 5.8 12.9 !
SCFXM) YES 478 10.5 50, 13
SCTAPZ YES 540 10,6 8702
SCSD8 NO 900 10,0 9.0

In informal tests scaling seemed to affect partial pricing {n the same way
as full pricing, and so the above choives of scaling or no scaling were
kept throughout the tests,

Experiments with the parameter 1y vyielded the following settings:

i
SCAGR25)
SCRS8 .2
GROW15 .2
SCFXM3 .2
SCTAP2 .05
sCsn8 .5

As expected, a higher y tended to reduce the number of fterat{ons but
to increase the cost per {teration. SCSD8 was an extreme case (with con-

tinuous cyclic pricing):

40

Y iterations cpu sec/100 iter total cpu sec

1.0 906 7.0 61.1
0.5 9938 3.9 8.6
0.2 1338 3.6 a8.4

In other cases the cholce of y was not so critical. SCTAN? seemed to
require about the same number of {iterations for any y in the range
0.5-0.01, and s0 {ts best setting was smaller than the averape.

The best partial-pricing test runs--in terms of total CPU

seconds--were as follows:

BEST RUNS CPU SEC/ TOTAl. % OF FULL

ORDER METHOD ITERATIONS 100 ITER CPU SKEC TRICING
SCAGR25 balanced simple w/thr 333 3.9 13.0 91%
cyclic cont fnuous 348 3.9 13.5 943
SCRS8 latest simple 272 4.5 12.2 S6%
GROW1S5 cyclic repeated 508 3.8 19.4 9%
SCFXM3 cyclic repeated 514 7.0 5.9 A A
SCTAP2 cyclic cont {inuous 614 6.4 39.1 68%
cyclic simple 642 6.1 39.4 09%
SCSP8 cyclic repeated 996 3.8 8.1 4%
cyclic cont {nuous 998 3.9 8.0 A%

The diversity of best methods is striking: of the seven methods tested,
five showed up as best or near-best on at least one problem, Stpuificantly,
the one method most similar to non-staircase methods~-cvelic cont inuous
pricing--was never a unique best, and was not among the bhest at all i{n

half the cases. Thus a strong case {s made for ataircase pricing by period.

41

Four of the six problems showed the expected behavior of partial
pricing versus full pricing: an increase {n number of {terations, but a
compensat ing decrease in time per {terat{on. SCRS8 and (GROW1S, however,
tion, and their total rumuing times are reduced dramatically. The only
greater reduction is for SCSD8, whose timings for full pricing are inflated
by {ts huge number of columns.

The reduction of {fterations tor SCRS8 and GROWLS is accomplished
in both {nstances by pricing methods that tend to suboptimize. 1t thus
appears that in some cases suboptimfzation {s a highly successful strategy:
it simultaneously shortens the {teration path and makes cach {teration
cheaper.

Overall, partial pricing was decisively superior to full pricing
for all but the smallest LP, SCAGR25. Not too much should be made of this
comparison, however, since full pricing by greatest reduced cost is
seldom used {n practice. It {s more meaningful to compare these results
with non-staircase partial pricing, as {s done at the end of this section.
A comparison with steepest-edge pricing (which 18 always full) would also
be revealing, but unfotunately MINOS is not set up for the required cal-
culations. Nevertheless, {t does seem unlikely that a steepest-edge
criterion could reduce the number of {tevations for SCRS8, GROWS or
SCSD8 sufficiently to overcome the efffciencies of partial pricing.

Best results aslde, different methods varifed considerably in how
close they came to best over the range of problems. FEach method {s examined
individually below. At the end of this section the best times are

again considered, in comparisons with non-staircase methods.

Cyclic pricing by period .

Simple cyclic pricing by period generally gave acceptable, {f not

' impressive, results:

, SIMPLE CYCLIC PRICING
? CPU SEC/ TOTAL ¥ OVER

1TERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 415 3.6 15.0 154
SCRS8 429 4.0 17.2 42%
GROW15 588 4.8 28.0 447
SCFXM3 510 7.6 38.7 8%
SCTAP2 642 6.1 39.4 1%
sSCcsp8 969 4.3 41.3 8%

Here the typical tradeoff with full pricing--more iterations, less timwe
per fteration--i{s found in every case. Thus worst results are with
SCRS8 and GROW1S, for which this tradeoff can be avoided by other methods

as discussed above.

Continuous cyclic pricing improved upon the simple version in

every {instance:

CONTINUOUS CYCLIC PRICING

CPS SEC/ TOTAL 2 OVER

ITERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 348 3.9 13.5% o%
SCRsS8 3585 4.0 14,3 18%
GROWL1S 600 4.5 27.2 40%
SCFXM3 526 7.3 38.3 %
SCTAP2 614 b.4 39.1 0%
SCsSD8 998 3.9 318.6 1%

43

—

Thus the more sophistciated stopping rule of continuous pricing does pay
off. Continuous cyclic pricing was most uniformly reliable of the methods
tested, and should be preferred when no time is available for testing
other methods.

By contrast, the performance of repeated cyclic pricing was

somewhat mixed:

REPEATED CYCLIC PRICING

CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 396 3.7 14.6 12%
SCRS8 375 4.0 15.2 25%
GROW15 508 3.8 19.4 0%
SCFXM3 514 7.0 35.9 02
SCTAP2 1115 6.1 68.4 75%
SCsD8 996 3.8 38.1 0z

Repeated pricing is best in half the cases, but significantly worse in
the other half. In the worst case, SCTAP2, it would be a disaster. Yet
time per iteration is consistently no greater than for continuous pricing;
the determining factor is number of iterations.

The behavior of repeated pricing confirms what one would expect
of a method that tends to suboptimize. When suboptimization works well,
it finds a short iteration path at low cost; when it works poorly it
tends to get stuck at suboptimal solutions and the iteration path may

be unduly long.

44

e A

Earliest and latest pricing by period

Signs of suboptimization are especially clear in the results of

simple earliest and simple latest pricing:

SIMPLE EARLIEST PRICING

CPU SEC/ TOTAL 2 OVER

ITERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 467 4.2 19.5 502
SCRS8 879 4.7 41.6 242%
GROW15 605 4.4 26.7 38%
SCFXM3 625 8.9 55.3 54%
SCTAP2 >1479 (8.0) 3120.0 $200%
SCSD8 >2000 (4.0) > 79.7 >100%

SIMPLE LATEST PRICING

CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 391 3.8 14.9 14%
SCRS8 272 4.5 12.2 ox
GROW15 1387 4.6 63.7 228%
SCFXM3 587 7.7 45.0 25%
SCTAP2 1200 7.1 84.9 117%
SCSD8 >2000 5.7 >112.9 >200%

The pattern is similar to that for repeated cyclic pricing, but more
pronounced: huge variations in performance from problem to problem,
with number of {terations the most important factor. Three runs were
s0 hopelessly long that they were stopped prior to optimality; lower

bounds on their results are indicated by notations such as ">M2000",

45

Curiously, earliest pricing is much better than latest on half
the problems, while latest is much better than earlieat on the other
half. There seems no obvious explanation for this dichotomy, except to
say that it is due to the different naturcs of the problems.

Results are probably also strongly influenced by the choice of
starting basis. In the case of SCTAP2, for instance, early tests showed
that simple latest pricing is much superior to simple cyclic pricing when
the initial basis is all-slack. Indeed, latest pricing required only 1177
iterations from an all-slack start, compared to 1200 from the feasible
start above!l

Clearly pricing methods that suboptimize can give spectacular
results. But they are not uniformly effective, and only preliminarv test-

ing can determine whether they are appropriate to a particular LP.

Balanced pricing by period

The results of simple balanced pricing with threshold were for the

most part uniformly mediocre:

SIMPLE BALANCED PRICING (WITH THRFSHOLD)

CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU_SEC BEST RUN
SCAGR25 333 3.9 13.0 0%
SCRS8 323 4.7 15.1 25%
GROW1S 634 5.0 31.5 022
SCFXM3 729 7.9 57.4 60%
SCTAP2 884 6.5 57.7 481
SCSD8 1173 4.6 54.0 42%

46

nrpr—esp-ap

Pl AR,

prap R Y P ey R S E e e SN

Times per itteration are generally worse than for cyclic pricing;
apparently there are not very many acceptable candidates in column-
deficient periods, and more reduced costs must be computed. Iteration
counts are also greater except for SCAGR25 and SCRS8. SCAGR2S is the

only clear success.

Barrier pricing by period

Simple barrier pricing with threshold was worse than simple

cyclic pricing in every instance:

SIMPLE BARRIER PRICING (WITH THRESHOLD)

CPU SEC/ TOTAL % OVER

ITERATIONS 100 ITER CPU SEC BEST RUN
SCAGR25 442 4.1 17.9 38%
SCRS8 386 4.7 18.1 493
GROW15 603 5.1 30.5 57%
SCFXM3 524 7.9 41.6 16%
SCTAP2 957 6.0 57.8 48%
SCSD8 1231 4.1 50,2 324

Better times per iteration and fewer iterations were achieved by cvelic
pricing in most cases.

Possibly barrier pricing employs too simple a criterion to he
effective. As implemented in the test code, it looks only for square sub-
staricases in the lower-staircase and columm-upper-staircase forms

inherited by the basis; it may overlook other pricing barriers. This

hypothesis is supported somewhat by the following table, which lists

average numbers of lower square sub-staircases in the reduced-staircase

form of the basis, as reported by MINOS's basis-factorization routine:

MEAN LOWER SQUARE SUB-STAIRCASES
CYCLIC CYCLIC
FULL (CONTINUOUS) (REPEATED) EARLIEST LATEST BALANCED _BARRIER

SCAGR25 1.7 2.8% 3.7 3.6 3.3 3.1% 2.0
SCRS8 4.0 2.1 1.2 1.2 5.2% 2.9 2.0
GROW15 9.7 11.6 12.0% 10.9 9.8 9.9 11.1
SCFXM3 2.4 2.8 2.5% 3.0 3.8 2.7 2.4
SCTAP2 4.9 3.9* 2.8 1.5 3.3 2.2 1.8
SCsSD8 2.2 2.7 8.2* 1.5 16.4 8.7 3.5

*
Best runs

The figures vary considerably from one pricing method to the next, yet no
strong pattern emerges. One may conclude that pricing strongly influences

the barrier structure of the basis, but in a complex way.

Partial computation of the price vector

All of the runs reported to this point used a staircase "bump-and-spike"
pivot order in Gaussian elimination, and hence computed only part of the
price vector as described in Section 3. To determine the value of this
arrangement, six of the best runs were duplicated twice with full computa-

tion of =n: once using the same staircase pivot order, and once with the

standard pivot order.

e
eI

T oy &

o SRS LN TN W

Although theoretically the pivot order and computation of =
should have no effect upon the iteration path, in practice small
numerical differences can result in quite different paths and different
numbers of iterations. Thus times for the full-m runs below were normalized
to reflect the same number of iterations as the partial-n run.

Resulcts of these tests were as follows:

CPU SECONDS, n COMPUTED AS FOLLOWS:

PARTIAL: FULL: FULL:
ORDER METHOD STAIR PIV STAIR PIV STANDARD P1V
SCARG25 balanced simple w/thr 13.0 14.2 (- 8%) 13.9 (- 7%)
SCRS8 latest simple 12.2 13.5 (-102) 13.8 (~122)
GROW1S cyclic repeated 19.4 21.9 (-11%) 22.0 (-12%)
SCFXM3 cyclic repeated 35.9 38.2 (- 6%) 38.6 (- 7%)
SCTAP2 cyclic continuous 39.1 42.7 (- 8%) 42.0 (- %)
sCsh8 cyclic continuous 38.6 44,1 (-12%) 45.0 (-16%)

Partial computation of n 1is seen to offer a modest but consistent saving
of 6-12%. With full computation of n the staircase pivot order ovffers
no advantage over the standard order except for SCSDS.

These findings confirm those of [2]. 1t is possible, as suggested
in [2], that other staircase pivot-ordering techniques may handle some
of these LPs better than the bump-and-spike technique; but the savings
through partial computation of 1 should be realized equally well with

any staircase ordering.

49

£ din ;e WO TRE Y L

Comparison with a commercial code

To compare staircase pricing to a traditional approach, the six
test problems were also solved with the WHIZARD LP code of the MPS III
system [14]. WHIZARD is a commercially marketed assembly-language code
that should be inherently faster than the FORTRAN test version of
MINOS. However, a comparison of the iteration counts and timings should
give some rough idea of the practicality of stalrcase pricing techniques.

WHIZARD employs a combination of partial and multiple pricing
with a maximumreduced-cost criterion. Optional scaling is available, and
was used with the four LPs that were scaled for MINOS. Details of the
WHIZARD runs appear at the end of Appendix B.

The best MINOS runs for each LP compare with the WHIZARD runs

as follows:

ITERATIONS SEC/100 ITER TOTAL SEC MINOS VS

MINOS WHIZ MINOS WHIZ MINOS WHIZ WHIZARD
SCAGR25 333 301 3.9 4.1 13.0 12.2 + 7%
SCRsS8 272 499 4.5 3.6 12.2 16.1 =24%
GROW15 508 788 3.8 3.3 19.4 26.1 -26%
SCFXM3 514 524 7.0 5.5 35.9 28.5 +262
SCTAP2 614 658 6.4 4.5 39.1 29.4 +33%
SCSD8 996 1077 3.8 3.7 38.1 39.4 - 3%

Surprisingly, MINOS was faster in half the cases and significantly slower

in only two. This favorable showing can be explained largely by the

advantages of staircase pricing.

it AU E O L WA B AT

Staircase pricing under MINOS required substantially fewer
iterations with SCRS8, GROW1S and SCSD8, offsetting any disadvantage
in time per iteration. Hence MINOS was actually faster for th;s:b
problems. Moreover, in the cases of GROW15 and SCSD8 the MINOS times
per iteration were not much greater than the WHIZARD times; it appears
5 that MINOS made up for its inherent slowness by computing only part of =
and by pricing far fewer variables per iteration. (It is hard to say
anything more precise, however, since WHIZARD does not report the
number of variables priced.)
SCAGR25 reversed the situation: it traded more iterations under
MINOS for slightly less time than WHIZARD per iteration. On the whole
MINOS came out only slightly behind.
For SCFXM3 and SCTAP2 the numbers of iteration were comparable
and WHIZARD had the expected edge in time per iteration. As a result
MINOS was about 30% slower overall, a respectable showing considering

the inefficiencies of FORTRAN.

These results suggest that a truly fast implementation of stair-
case pricing--perhaps incorporating machine language in critical portions
~-would be advantageous in almost every case and highly advantageous in
many cases. If the best methods of [2] were also implemented, some stair-
case LPs could well be solved in a half or even a quarter of the time

currently taken by the fastest codes.

s m;g

APPENDIX A: TEST PROBLEMS

The linear programs used for the computational experiments of
Section 6 are described in greater detall below., The tabular summaries
for each LP are largely self-explanatory, but a few general notes are
appropriate:

All statistics except OBJ ELEMS refer ouly to the staircase
constraint matrix, excluding the objective row and right-hand side. In
each case the constraint matrix, A, has been put in reduced standard
form; DIAGONAL BLOCKS refers to the stalrcase blocks Aqq' and OFF-DIAGONAL
BLOCKS to the blocks A‘+1‘Q.

Variables (columns) are implicitly constrained only to be non-
negative, unless there is an indication to the contrary. BOUNDED implies
implicit lower and upper bouunds.

MAX ELEM and MIN ELEM are the largest and smallest mapnitudes of
elements in A; LARGEST COL RATIO is the greatest ratio of magnitudes
of any two elements in the same column of A. Where values are given
BEFORE SCALING and AFTER SCALING, all tests were conducted with A

scaled as described in Appendix B, Otherwise NO SCALING is indicated.

- v

[
»
!
1
1
H
v
3

SCAGR25

Test problem received from James K. Ho, Brookhaven National

Laboratory, Upton, N.Y.; source not documented.

DIAGONAL BLOCKS OFF~DIAGONAL BLOCKS OB.J
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS
1 18 20 45 131 8 7 17 30% 19
2-24 19 20 45 12X 8 7 17 0% 19
25 16 20 43 13% 19
1 R, [—— ———— e
: 1146 12 408 30% 475

T =) e R o Ry WP .+ S PRI N T SR I -Vt -

GRAND TOTALS

o T e

ROWS 471 (300 EQUALITIES, 171 INEQUALITIES) ‘
CoLS 500 §
ELEMS 15564 %
DENS 0.7% §

NO i
COEFFICIENTS SCALING b
MAX ELEM 9.3 é
MIN ELEM 2.0 x 107})
LARGEST COL RATIO 1.9 x 10!

53

NURSR
Perived frvm a model of the United States' optiona for a

tranaftton (vom oil and gas to synthetic fuelr; documented fn [Q,113].

DTAGONAL RLOGRS OFF-DIAGONAL_ BILOCKS ORJ

PERTOD ROWS - QOLS BLEMS DENS ROWS QULS FLEMS DENS ELEMS
! 8 Az 6% 6% 25 3 2q q 18
; ;8 R [6% BAY 22 L] K} 19
-5 n 6 181 8% PR Py 2V 5% 98
0-R 12 i) \9) 3% B 22 29 % 8
9 k1] IA) 189 10 PR ;7 29 9% 38
10-12 n N 1o L ¥4 25) M % jQ
141 W B\ 1806 4 25 27 29 % 99
o 3 1o 177 &]% 59
2147]/ 415 5% 847

GRAND TUTALS

ReWS 490 (184 FQUALITIES, 106 INEQUALITIES)
CoLS 1160
FLRMS nas
PENS 0.0%
BRFURK AFTFR
CORFFI CURNTS SCALING RCALTNG
MAX FLEM V.9~ tu) 4.0
MIN KLEM o~ 2o 0]
LARGRST (0L RATIO 4.8 ~ 10 1.e o~ 0!

SA

GROW135
A simple dynamic input-output LP comstructed for test purposcs.

1t is based on the following model: define sets,

IND set of goods

OBJ] set of export goods: a subset of IND

and parameters,

T number of periods
“lj units of good 1 needed to produce 1 wit of good §;
{. 1 ¢ IND
m, maximum product{fon of good { in a period; { € IND
\J proportion of m, that may be stored;
om, {s maximum stock of good 1 at begiuntug of a period
Piy expected {ncome per unft of good { in period t;

1t OB, t=1,,.., T

Then the variables are

X production of good {1 in period t; § ¢ IND, t = 1,..., T
8 stock of good {1 at beginnfug of period t;

1 € IND, t = 1,..., T+l

and the LP is

55

maximizge

subject to

For GROWLS, T = 19.
20~sector input-output analysiz of the U, S,

of size 3 was picked arbitrarily, as were the values

T 3
t=]

21 cosy Pie *qe

1 C€IND, ¢=1,...,T

- + ¢
heen T % T % Y Xj € INp “1y%ge

0< (e < m { CIND, t=1,...,T
0 < Sit < Omi 1 CIND, t=1,,..,T4+
The values of aij and ml wetre taken from a

economy {n [3]. A set ORJ

Pyes O was set at 0. 3.

DIAGONAL BLOCKS . _OFF*DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS OOLS KLEMS DENS ELEMS
1-14 20 43 356 41X 20 20 20 sy 3
15 0 43 156 41X 3
53400 411 280 53 45
GRAND TOTALS
ROWS 300 (ALL EQUALITIES)
coLs 645 (510 BOUNDED)
ELEMS 5620
DENS 2.9%
BEFORE AFTER
COEFFICIENTS SCALING SCALING
MAX ELEN 1.0 1.2 x 10°
MIN ELEM 6.0 x 107 8.1 x 107" ?
LARGEST COL RATIO 1.3 x 10° 1.5 % 1o ;

SCFXM3

Laboratory, Upton, N.Y.; source not documented.

Test problem received from James K. Ho, Brookhaven National

57

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS 0BJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS
1 92 114 679 6% 9 57 61 12% 13
2 82 99 434 5% 9 35 35 112 4
3 66 126 300 4% s 33 33 20% 1
4 90 118 1047 10% 5 s 5 20% 5
5 92 114 679 X 9 57 61 12% 13
6 82 99 43 5% 9 35 35 11% 4
7 66 126 300 4% 5 33 33 20% 1
8 90 118 1047 10% 5 s 5 20% 5
9 92 114 679 6% 9 57 61 12% 13
10 82 99 43 5% 9 35 35 11% 4
11 66 126 300 4% 5 33 33 20%
12 9 118 1047 10% 5
7380 7% 397 132 69
GRAND TOTALS
ROWS 990 (561 EQUALITIES, 429 INEQUALITIES)
coLs 1371
ELEMS 7777
DENS 0.6%
BEFORE AFTER
COEFFICIENTS SCALING SCALING
MAX ELEM 1.3 x 102 1.1 x 10
MIN ELEM 5.0 x 10”4 8.7 x 1072
LARGEST COL RATIO 1.3 x 10° 1.3 x 10°

R T

“r

i
K
!
¢
3

SCTAP2

A dynamic traffic assignment problem, documented in [10]. The
LP has 11 objective rows; the one named OBJZZZZZ was used in all tests,

and the other ten were deleted. Statistics below omit the ten deleted

objective rows.

R e e

DIAGONAL BLOCKS OFF-DIAGONAL BLOCKS OBJ
PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS ELEMS
1-9 109 188 423 2% 62 138 276 3% 141
10 109 188 423 22 141
4230 2% 2484 37 1410
GRAND TOTALS
ROWS 1090 (470 EQUALITIES, 620 INEQUALITIES)
COLS 1880
ELEMS 6714
DENS 0.32
BEFORE AFTER
COEFFICIENTS SCALING SCALING
MAX ELEM 8.0 x 10} 2.5
MIN ELEM 1.0 4.0 x 1071

LARGEST COL RATIO 8.0 x 101 6.4

e ot

SCSD8

i e o s e s 35 i+ £ e

A multi-stage structural design problem, documented in {8].

This 18 the only stailrcase test problem in which the states do not

represent periods of time.

DIAGONAL BLOCKS

OFF-DIAGONAL BLOCKS

PERIOD ROWS COLS ELEMS DENS ROWS COLS ELEMS DENS
1-38 10 70 130 192 10 50 90 18%
39 17 90 224 15%

5164 182 3420 18%
GRAND TOTALS
ROWS 397 (ALL EQUALITIES)
COLS 2750
ELEMS 8584
DENS 0.8%

NO

COEFFICIENTS SCALING
MAX ELEM 1.0
MIN ELEM 2.4 x 107}
LARGEST COL RATIO 4.0

59

i

E |
|
i
i
|

APPENDIX B: DETAILS OF COMPUTATIONAL TESTS

Computing environment

All computational experiments were performed on the Triplex
system (19] at the Stanford Linear Accelerator Center, Stanford University.
The Triplex comprises three computers linked together: one IBM 360/91
and two IBM 370/168s. Runs were submitted as batch jobs in a virtual-
machine environment, under the control of IBM systems 0S/VS2, OS/MVT
and ASP.

Test runs employed a specially-modified set of linear-programming
routines from the MINOS system [15,17]. MINOS is written in standard
FORTRAN. For timed runs, MINOS was compiled with the IBM FORTRAN IV
(H extended, enhanced) compiler, version 1.1.0, at optimization level 3

{11}.

Timings

All running-time statistics are based on "CPU second” totals for
individual job steps as reported by the operating system. To promote
consistency all timed jobs were run on the Triplex computer designated
"system A," and jobs whose timings would be compared were run at about
the same time. Informal experiments showed roughly a 1% variation in

timings due to varying system loads.

MINOS linear-programming environment

MINOS was set up for test runs according to the defaults indicated

in [15], with the exception of the items listed below.

Scaling. Problems noted as "scaled" in Appendix A were subjected
to the following geometric-mean scaling (where A denotes the matrix of

constraint coefficients, not including the objective or right-hand side):

1: Compute = max|A, ,/A, .|, AL, ¥ 0.

23
2: Divide each row { of A, and its corresponding right-hand side
1/2

o
0 ilj 12j

value, by [(minj'Aij')(maleAijl)] , taking the minimum

over all Aij ¢ 0.

3: Divideeachcolumn j of A, snd its corresponding coefficient

in the objective, by [(minilAijl)(naxifAiJ‘)]1/2.

taking the minimum over all Ay ¥ 0,

3
/ ¢ 0.

I, A
1,3

4: Compute p = maxlkilj Aizj
This procedure was repeated as many times as possible until, at step &,
0 was at least 90% of °o° (In other words, scaling continued as long
as it reduced p, the greatest ratio of two magnitudes in the same colum,

by more than 10%.)

Starting basis. A feasible starting basis was determined for

each LP as follows. MINOS was slightly modified so that it would stop

and save the first feasible basis obtained; each LP except GROW1S was

run on this modified version, from an all-slack start (crash option 0)

with full pricing. The saved feasible basis was used as a starting
basis in all subsequent test runs. For GROWlSihn all-slack basis is
feasible, and so all test runs of GROW1S5 employed an all-slack (crash

option 0) start.

Termination. Virtually all test runs terminated at an optimal
solution. However, three runs--as indicated in Section 6--were
terminated short of optimality because they required too much time or

too many iterations.

Basis factorization. The staircase bump-and-spike factorization

of (2) was employed in all test runs except as indicated otherwise in

Section 6.

Refactorization frequency. The "INVERT FREQ" for MINOS was set

to 50; hence MINOS refactorized the basis (by performing a fresh

Gaussian elimination) every 50 iterations.

Tolerances. The "LU ROW TOL'" for MINOS was set to IO_A. All

other tolerances were left at their default values.

62

Modifications to MINOS

All MINOS runs described in this paper were made with a special
test version of MINOS. This version was essentially the same as the
special test version described in Appendix B of [2], except for modifi-
cations to subroutine PRICE to implement the algorithms of Section 5.

Modified subroutines that are particularly important to pricing

are described briefly as follows:

BTRANL optionally computes only part of the price vector as
outlined in Section 3. (There is no provision for updating the

price vector.)

SETPI determines the price vector back to a specified period,

calling BTRANL as necessary.

PRICE chooses a nonbasic variable to enter the basis, employing
either full pricing or one of the partial-pricing methods described
in Section 5. Reduced costs are computed from the price vector
by method (a) of Section 2.

SETPI is called one or more times to

get needed parts of the price vector.

SPECS2 determines which pricing method and algorithm will be used

in a particular run, and sets the parameters y and T, according

to instructions in the SPECS input file.

Other modifications are summarized in Appendix B of [2].

63

g ———

3
{
B
J
¥
4
t
¥

MPS III linear programming environment

For purposes of comparison all test problems were also run on
the MPS III system [14], as explained in Section 6.

MPS III runs employed the WHIZARD linear-programming routines of
version 8915 of MPS II1. Starting bases were the same as for the MINOS
runs, and termination was at an optimal solution in every case. CPU
timings reported in Section 6 include both the compiler and executor steps.

The contrel program for a typical MPS III run was as follows:

PROGRAM
INITIALZ
XPROC = XPROC + 6000
XCLOCKSW=0
XINVERT=1
XFREQINV = 50
XFREQLGO=1
XFREQl= 3000
MVADR(XDQFREQ1,TIME)
MOVE (XDATA, 'SCRSS8')
MOVE (XPBNAME, ' SCRS8"')
CONVERT('FILE','INPUT')
SETUP("MIN', "SCALE')
MOVE (XOBJ, ' COST")
MOVE (XRHS, 'RHS')
INSERT('FILE', 'PUNCH1')
WHIZFREQ DC (250)
WHIZSCAL DC (4)
WHIZARD (' SCALE' ,WHIZSCAL)
TIME EXIT
PEND ~

Control programs for the other LPs were essentially the same. However,
the 'SCALE' parameter was dropped from the SETUP and WHIZARD lines for
SCAGR25 and SCSD8, since these two LPs were unscaled in all of the

MINOS runs.

64

REFERENCES

(1]

(2]

(3]

(4]

{51
(61

[7]

(8]

(91

F (10]

(11]

(12]

(13]

[14]

Fourer, Robert, "Sparse Gaussian Elimination of Staircase Linear
Systems.”" Technical Report SOL 79-17, Systems Optimization Labo-
ratory, Dept. of Operations Research, Stanford University (1979).

» ""Solving Staircase Linear Programs by the Simplex Method,
1: Inversion." Technical Report SOL 79-18,, Systems Optimization

Laboratory, Dept. of Operations Research, Stanford University (1979).

Glassey, C. Roger and Peter Benenson, "A Quadratic Programming
Analysis of Energy in the United States Economy." Report ES-116,
Electric Power Research Institute, Palo Alto, CA (1975).

Goldfarb, D., "On the Bartels-Golub Decomposition for Linear
Programming Bases." Mathematical Programming 13 (1977), 272-279.

and J. K. Reid, "A Practicable Steepest-Edge Simplex
Algorithm." Mathematical Programming 12 (1977), 361-371.

Harris, Paula M. J., "Pivot Selection Methods of the Devex LP Code."
Mathematical Programming 5 (1973), 1-28.

Herman, Richard J., "Dynamically Restricted Partial Pricing in
the Simplex Method for Linear Programming.' Report RC 7151, IBM
Watson Research Center, Yorktown Heights, N.Y. (1978).

Ho, James K., "Optimal Design of Multi-Stage Structures." Computers
and Structures 5 (1975), 249-255.

, '""Nested Decomposition of a Dynamic Energy Model." Manapge-
ment Science 23 (1977), 1022-1026.

5 "A Successive Linear Optimization Approach to the Dynamic
Traffic Assignment Problem." Report BNL-24713, Brookhaven National
Laboratory, Upton, N.Y. (1978).

IBM OS FORTRAN IV (H Extended) Compiler Programmer's Guide. No.
§C28-6852, International Business Machines Corp. (1974).

Kuhn, Harold W. and Richard E. Quandt, "An Experimental Study of the
Simplex Method." Proceedings of Symposia in Applied Mathematics 15
(American Mathematical Society, 1963), 107-124.

Manne, A. S., "U. S. Options for a Transition from O0il and Gas to
Synthetic Fuels." Discussion Paper 26D, Public Policy Program,
Kennedy School of Government, Harvard University (1975).

MPS III Mathematical Programming System: User Manual. Ketron, Inc.,
Arlington, VA (1975).

(15]

(16]

(17]

(18]

i {19]

[20]

[21]

Murtagh, Bruce A. and Michael A. Saunders, "MINOS: A Large~Scale
Nonlinear Programming System (For Problems with Linear Constraintsg)."
Technical Report SOL 77-9, Systems Optimization Laboratory, Dept.

of Operations Research, Stanford University (1977).

Orchard-Hays, William, Advanced Linear-Prqgramming Cogguting
Technigues (New York: McGraw-Hill Book Co., 1968)

Saunders, Michael 4., "MINGOS System Manya}." Technical Report
SOL 77-31, Systems Optimization Laboratory, Dept. of Operations
Research, Stanford University (1977).

Tomlin, J. A., "On Pricing and Backward Transformation in Linear
Programming. " Mathematical Programming 6 (1974), 42-47.

Vinson, Ilse, "Triplex User's Guide." User Note 99, SLAC Computing
Services, Stanford Linear Accelerator Center (1968).

Wolfe, Philip, "The Composite Simplex Algorithm." SIAM Review 7
(1965), 42-54.

and Leola Cutler, "Experiments in Linear Programming."
Recent Advances in Mathematical Programming, R.L. Graves

and Philip Wolfe, eds. (New York: McGraw-Hill Book Co., 1963),
177-200.

\\{Cflkoberf/Foure;‘) {;{:}7 NBBD14-75- 0267

UNCLASSIFIED
SECURITY CLASSIPICAT ON OF THId> PAGE (When Dale Batered)
REPORT DOCUMENTATION PAGE T nl .-'ff.L-?"«’.'fﬁ?iﬁiﬁ‘x:&l?"rﬁ,uaq
1 RECIPIENT 'S CATALNG NUMDI R

. [:. GOV ACCESSION NO,

4 VATLE fand Subtitie))

Solving Staircase Linear Proqrams By (5’
The Simplex Method, 2¢ Pricing, 1

3 YYPRE O REVONY A PERIOL COVENPD

Technicul/RépE?t.

ORY NuMBELN

SOL 79-19

. AUTHOR(s) N § EONYRACY ONGRANT NUMBER(e)

A

o T o -,’\ N U";-'/n’."SFJ"" "_,.F,‘C‘ |
% PERAPORMING ORGANIZATION NAMF AND ADDRESS ‘&W-‘”—l
Operations Research Department - SOL
Stanford University NR-047-143
Stanford, CA 94305

11 CONTROLLING OFFICE NAME ANO ADDRESS 7, Mii_aEAcas 5ata I
Operations Research Program - ONR - ,/ ,W(L
Department of the Navy N b 2 PAOES] .7 4. T
800 N. Quincy Street, Arlington, VA 22217 66 N A

MONITORING ASENCY NAME & ADDRESS(I! ditterent from Contealling Oftice) 18 SECURITY CLASS (of thie raport

UNCLASSIFIED

f-'."'b'i“c}' ASSIPFICATION/DOWNORADING
sCHEDULE

16 OISTRINUTION STATEMEN T (of tNle Report) T

This document has been approved for public release and sale:
its distribution is unlimited.

T DISTRIBUTION STATEMENTY (of the sbatract entered in Bloch 20, If ditterent from Rapert)

8. SUPPLEMENTARY NOTES - T

19 Ty WOROS (Continue on reverss alde il neceseary and identity by Mock number)

LARGE-SCALE LINEAR PROGRAMMING
STAIRCASE LINEAR PROGRAMS
SIMPLEX METHOD

10 ABSTYRACT (Continue en roverse side Il nessssery and identily by bleek aumber)

SEE ATTACHED

00,0 W « ar
voan oy 473 ufv‘-‘:-?:mu-“:.:.‘? s O8tOLE TR UNCLASS IF 1ED
SECURITY CLABBIPICATION OF THis PAGE (When Dare Brisred)

Y .

o, —J ».~-........-....” e

N

UNCLASSIFILL

SYCUMTY CLARMNPICAYION OF Tiis PAGE (When Dare Bntered)
-

79-149, Robert Fourer
Solving Staircase Linear Programs by ‘"c Simplex Method, 2: Pricing

This and a companion paper share one goal: to solve staircase-
structured linear programs faster through adaptation of the algorithms
of the modern simplex method. Their means are quite different
however: whereas the preceding paper concentrated on "inversion"
algorithms that factorize the basis and solve linear systems, the
present paper looks are "pricing” alyorithms that select a variable

to enter the basis at each iteration.

Tricing involves two sets of algorithms: computation algorithms that

determine reduced costs of the nonbasic variables, and selection
algoritims that choose among variables whose reduced costs are
favorable. This paper develops staircase adaptations of both sorts
of algorithms, and reports extensive (although prelwinary)
computational experience. Staircase computation algorithms appear
to offer modest but consistent savings: staircase selection algo-

rithus, properly chosen, may offer substantial <avings in number
of iterations, time per iteration, or sometimes both.

N

3 UNCLASSTFILD

(%) a4

PECUMTY SLADNFICATION OF Tt §AGRAR Bave Bhieren

